Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system

نویسندگان

  • Ylias M. Sabri
  • Samuel J. Ippolito
  • James Tardio
  • Vipul Bansal
  • Anthony P. O'Mullane
  • Suresh K. Bhargava
چکیده

Anthropogenic elemental mercury (Hg(0)) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg(0) removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg(0) vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m(3) or ~2.46 ppb(v)) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg(0) vapor concentration of 10.55 mg/m(3) at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg(0) sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg(0) vapor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حذف بخار جیوه از هوای مطب‎های دندان‌پزشکی با استفاده از یک سامانه پالایش گر مبتنی بر نانوذرات نقره

  Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury va...

متن کامل

Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg(0)) va...

متن کامل

Analytical Approach for Vibration Analysis of a Microsensor with Two layers of Silicon and Piezoelectric based on MCST

The vibration analysis is an important step in the design and optimization of microsensors. In most of the cases, COMSOL software is employed to consider the size-dependency on the dynamic behavior in the MEMS sensors. In this paper, the Modified Couple Stress Theory (MCST) is used to capture the size effect on dynamic behavior in a microsensor with two layers of the silicon and piezoelectric. ...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

An Electrochemical Microsensor Based on a AuNPs-Modified Microband Array Electrode for Phosphate Determination in Fresh Water Samples †

This work describes the fabrication, characterization, and application of a gold microband array electrode (MAE) for the determination of phosphate in fresh water samples. The working principle of this MAE is based on the reduction of a molybdophosphate complex using the linear sweep voltammetric (LSV) method. The calibration of this microsensor was performed with standard phosphate solutions p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014